Ethidium bromide-dinucleotide complexes. Evidence for intercalation and sequence preferences in binding to double-stranded nucleic acids.

نویسندگان

  • T R Krugh
  • F N Wittlin
  • S P Cramer
چکیده

The solution complexes of ethidium bromide with nine different deoxydinucleotides and the four self-complementary ribodinucleoside monophosphates as well as mixtures of complementary and noncomplementary deoxydinucleotides were studied as models for the binding of the drug to DNA and RNA. Ethidium bromide forms the strongest complexes with pdCdG and CpG and shows a definite preference for interaction with pyrimidinepurine sequence isomers. Cooperativity is observed in the binding curves of the self-complementary deoxydinucleotides pdC-dG and pdG-dC as well as the ribodinucleoside monophosphates CpG and GpC, indicating the formation of a minihelix around ethidium bromide. The role of complementarity of the nucleotide bases was evident in the visible and circular dichroism spectra of mixtures of complementary and noncomplementary dinucleotides. Nuclear magnetic resonance measurements on an ethidium bromide complex with CpG provided evidence for the intercalation model for the binding of ethidium bromide to double-stranded nucleic acids. The results also suggest that ethidium bromide may bind to various sequences on DNA and ItNA with significantly different binding constants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DNA and RNA specificity of eilatin Ru(II) complexes as compared to eilatin and ethidium bromide.

Eilatin-containing ruthenium complexes bind to a broad range of different nucleic acids including: calf thymus (CT) DNA, tRNA(Phe), polymeric RNAs and DNAs, and viral RNAs including the HIV-1 RRE and TAR. The nucleic acid specificity of Lambda- and Delta-[Ru(bpy)2eilatin]2+ have been compared to that of the 'free' eilatin ligand, and to the classic intercalating agent ethidium bromide. Interest...

متن کامل

A continuous kinetic assay for RNA-cleaving deoxyribozymes, exploiting ethidium bromide as an extrinsic fluorescent probe.

We describe a rapid and inexpensive method to monitor the kinetics of small RNA-cleaving deoxyribozymes, based on the exogenous fluorophore ethidium bromide. Ethidium binds preferentially to double-stranded nucleic acids, and its fluorescence emission increases dramatically upon intercalation. Thus, ethidium can be used in single-turnover experiments to measure both annealing of the deoxyribozy...

متن کامل

Evidence for tertiary structure in natural single stranded RNAs in solution.

Binding isotherms (20 degrees C) of ethidium bromide to a number of tRNA species at various ionic strengths indicate that i) the number ni of intercalation sites is high 7 to 11 per molecule, in the low salt form III, but small, 2 to 1, at high Mg2+ or Na+ when form I predominates. ii) modification of tRNA at strategic positions for 3D folding prevents full expression of intercalation restricti...

متن کامل

Direct observation of the reversible unwinding of a single DNA molecule caused by the intercalation of ethidium bromide

Ethidium bromide (EtBr) is the conventional intercalator for visualizing DNA. Previous studies suggested that EtBr lengthens and unwinds double-stranded DNA (dsDNA). However, no one has observed the unwinding of a single dsDNA molecule during intercalation. We developed a simple method to observe the twisting motions of a single dsDNA molecule under an optical microscope. A short dsDNA was atta...

متن کامل

Localization of the major ethidium bromide binding site on tRNA.

Binding of ethidium bromide to Escherichia coli tRNAVal and an RNA minihelix based on the acceptor stem and T-arm of tRNAVal was investigated by 19F and 1H NMR spectroscopy of RNAs labeled with fluorine by incorporation of 5-fluorouracil. Ethidium bromide selectively intercalates into the acceptor stem of the tRNAVal. More than one ethidium bromide binding site is found in the acceptor stem, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biopolymers

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 1975